Topological optics vs Fano resonance

B. S. Luk'yanchuk1, Z. B. Wang2, A. E. Miroshnichenko3, D. L. Gao4, C.-W. Qiu5, and Yu. S. Kivshar3

1Data Storage Institute, Agency for Science, Technology and Research, 117608 Singapore
2School of Electronic Engineering, Bangor University, Dean Street, Bangor LL57 1UT, Gwynedd, UK
3Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, 0200, Australia
4School of Physical Science and Technology, Soochow University, Suzhou 215006, China
5Department of Electrical and Computer Engineering, National University of Singapore, 119260 Singapore

Abstract

Two fascinating interference phenomena related to the scattering of light in plasmonics materials: Fano resonances [1, 2] and topological optics [3, 4] (singular optics, vortices, and dislocations of the wave front) are seemingly not related, e.g. it is possible to observe Fano resonances without topological effects as well as singular optics is not necessary accompanied by resonance effects. The majority of plasmonic nanostructures with Fano resonances suffer from scaling. Meanwhile, it is possible to generate Fano resonances within the nanostructures with a very small value of the size parameter. The fascinating property of these "nano-Fano resonance" structures is related to the coexistence of the Fano resonance and topological optical effects, where the characteristic size of vortices is well beyond the diffraction limit, see an example shown in Figure 1. It provides an insightful mechanism to manipulate Fano resonance stably down to the extreme nanoscale. It also opens up an unprecedented way for manipulating vortices in topological optics.

Figure 1: The forward scattering Q_{FS} and backscattering Q_{BS} efficiencies and Poynting vector distributions for the light scattering by plasmonic cylinder with size parameter $q = 0.2$.

References