The linear potential and the cubic phase

M. Zimmermann1, M.A. Efremov1, A. Roura1, W.P. Schleich1,2, A. Srinivasan3, J.P. Davis4, F.A. Narducci5, S.A. Werner6, and E.M. Rasel7

1Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
2Hagler Institute for Advanced Study at Texas A\&M University, Texas A\&M AgriLife Research, Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, Texas A\&M University, College Station, USA
3Naval Air Systems Command, EO Sensors Division, Patuxent River, USA
4AMPAC, North Wales, USA
5Naval Postgraduate School, Monterey, USA
6Physics Laboratory, NIST, Gaithersburg, USA
7Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany

The quantum mechanical propagator of a massive particle in a linear gravitational potential is well-known to contain a phase φ_g scaling with the third power of propagation time T \cite{1}. This phase has the remarkable feature of being proportional to the ratio m_g^2/m_i, where m_g and m_i denote the gravitational and the inertial mass of the particle, respectively.

We propose and analyze an experiment to observe this phase using an atom interferometer \cite{2}. As shown in Fig. 1 the atom experiences two different accelerations a_1 or a_2 depending on its internal state $|g_1\rangle$ or $|g_2\rangle$, respectively. In this way the atom accumulates two different phases $\varphi_g^{(1,2)}$ depending on its internal state and the total interferometer phase scales as T^3. Moreover, we compare this phase to the one accumulated by a particle moving in a time-dependent linear potential.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{time_space_diagram.png}
\caption{Space-time diagram of the T^3-interferometer. Four short Raman pulses effectively drive transitions between the two internal states $|g_1\rangle$ and $|g_2\rangle$ of a three-level atom.}
\end{figure}

\begin{thebibliography}{9}
\bibitem{1} E.H. Kennard, Zeitschrift für Physik 44:326 (1927)
\end{thebibliography}