Coherent effects in atomtronic circuits

Luigi Amico

MATIS–CNR-IMM, INFN & Dipartimento di Fisica e Astronomia, Catania.
Centre for Quantum Technologies, Singapore
LANEF 'Chaire d'excellence', Université Grenoble-Alpes & CNRS Grenoble, France

Abstract

Atomtronics is an emerging field seeking to realize atomic circuits exploiting ultra-cold atoms manipulated in micro-magnetic or laser-generated micro-optical circuits. In this talk, I will be focusing on maybe the simplest instance of atomtronic circuit: ultracold-atoms in ring-shaped potentials and pierced by an effective magnetic flux. Several quantum coherent effects occur in such systems that can be of interest in quantum technology[1]. In particular, I will be discussing the source-to-drain out of equilibrium dynamics of the bosonic fluid along the ring (see Fig1). I will show how the system experiences a specific crossover between physical regimes dominated by pronounced interference patterns and others in which the Aharonov-Bohm effect is effectively washed out[2].

FIG. 1. Atomtronic setup consisting of a superfluid condensate in a ring lattice with two attached leads. The dynamics is controlled by Aharonov-Bohm flux Φ and ring-lead coupling K. Particles tunnel between ring sites with rate J and particles interact on-site with strength U.