Continuous-wave modulation of a femtosecond Ti:sapphire oscillator
Department of Physics, 1150 University Avenue, University of Wisconsin, Madison, WI, 53706

Over the last two decades the invention of and developments in femtosecond lasers have had a big impact on a diverse range of scientific fields including biological imaging, nanotechnology, and ultrafast spectroscopy [1]. A critical development in the evolution of these lasers was the discovery of methods to broaden their frequency spectrum, which has typically been done using self-phase-modulation inside a photonic crystal fiber. Using such broadening an octave-wide spectrum can be produced which allows $f - 2f$ spectroscopy and locking of the carrier-envelope phase (CEP) of the comb [1]. In this talk, we describe a new method to broaden the frequency spectrum of a femtosecond laser oscillator [2]. The method relies on continuous-wave (CW) optical modulation of the femtosecond oscillator at a rate of 90 terahertz (THz) using Raman based four-wave mixing [3]. We prepare the optical modulator by driving deuterium (D$_2$) molecules to a highly coherent vibrational state using intense CW pump and Stokes laser beams inside a high finesse cavity. Once coherent vibrations are established, we can send any carrier laser through the cavity and produce frequency downshifted (Stokes) and upshifted (anti-Stokes) sidebands. The carrier beam does not need to be resonant with the cavity; the modulation is produced in a single pass. In particular, a femtosecond Ti:sapphire laser oscillator whose spectrum is centered at 800 nm is frequency modulated to produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively. The steady-state single-pass efficiency of our modulator is $\sim 10^{-6}$ and transient (10 μs-time-scale) single-pass efficiency is $\sim 10^{-4}$ (the efficiency is the ratio of the generated frequency upshifted sideband power to the incident carrier power). Figure 1 shows the modulated Ti:sapphire output observed on a grating spectrometer over the 600-900 nm spectral range, clearly showing the frequency upshifted anti-Stokes sideband.

![Figure 1: The modulated Ti:sapphire spectrum at the output of the cavity as recorded on a grating spectrometer, clearly showing the incident Ti:sapphire spectrum as well as the frequency upshifted anti-Stokes sideband. The plots are obtained for two different modes of operation for the Ti:sapphire laser: (a) without mode-locking (and therefore narrow spectrum), (b) with mode-locking. The solid blue lines are the spectrum analyzer scans showing the Ti:sapphire and the frequency upshifted spectrum simultaneously. The solid orange lines are separate scans of the initial unmodulated Ti:sapphire spectrum that are normalized in order to more clearly display the input spectral features.](image)

References