Parametric-Down Conversion of X-rays into the Optical Regime

A. Schori1, C. Bömer2, D. Borodin1, S. P. Collins3, B. Detlefs4, M. Moretti Sala4, S. Yudovich1, and S. Shwartz1

1Physics Department and Institute of Nanotechnology, Bar Ilan University, Ramat Gan, 52900 Israel
2European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
3Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
4European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France

Nonlinear interactions of x-rays and optical radiation can provide insight into the microscopic structure of chemical bonds and valence electrons in solids, and into light-matter interactions at the atomic-scale resolution [1-3]. The high resolution is the result of the use the x-rays, whereas the optical fields interact with the valence electrons. This probe has a great potential to be used for testing and improving the understanding of condensed matter physics.

We present the first measurements of extreme non-degenerate parametric down-conversion (PDC) of x-rays into the optical regime [4]. The experimental setup is shown in Fig. 1. We measured PDC at energies that correspond to various optical wavelengths in the range of 280-650 nm. A measurement of the PDC x-ray signal for an analyzer scan is shown in Fig. 2(a). A measurement of the PDC x-ray signal as a function of crystal angle is shown in Fig. 2(b). The PDC signal is well above the background and the separation from the elastic is pronounced.

Fig. 1: Experimental setup

Fig. 2: (a) X-ray signal count rate as a function of the detuning from the photon energy of the input beam. (b) X-ray signal count rate as a function of the pump deviation angle from the phase matching angle. The blue dots are experimental data and the red curve is calculated from theory.