The interaction between light and matter can give rise to novel topological states. This principle emerged in Floquet topological insulators, where classical light was used to induce a topological electronic band structure. These ideas can be extended to the mixing of single photons with excitons which can result in new topological polaritonic states—or “topolaritons.” Taken separately, the underlying photons and excitons are topologically trivial. Combined appropriately, however, they give rise to nontrivial polaritonic bands with chiral edge modes allowing for unidirectional polariton propagation. In my talk, I will outline strategies for obtaining a sizable topological gap in the polariton spectrum and propose practical ways to realize topolaritons in semiconductor quantum wells, monolayer transition metal dichalcogenides, as well as generic polariton systems.