Time-resolved photoemission interferograms of Cu, Ag, and Au surfaces

Marcelo J. Ambrosio and Uwe Thumm
Physics Department, Kansas State University, Manhattan, KS 66506, USA

Attosecond pulse trains that are synchronized with the driving IR laser allow for time-resolved investigations of the electronic dynamics in matter by reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) [1-5].

RABBITT spectra and phases from Ag(111) and Au(111). Figure 1 shows our numerical results obtained by representing the d-valence band of the target by tight-binding states [1]. We found spectra calculated with tight-binding initial states to agree better with the experimental spectra in [4,5] than a DFT-based (“Chulkov” potential) modeling of the valence band. Fresnel reflection of the incident IR pulse enhances side-band yields and induces a harmonic-order-independent phase shift of -1.6 radians.

Fig. 1: Experimental [4] (a) and simulated [1] (b) RABBITT spectra for Au(111). (c) RABBITT phases relative to Ar gas phases. Experimental phases [4] include a beam propagation phase.

We predict distinctly different RABBITT spectra from Cu(111) and Cu(100) [2] (Fig. 2). These can be distinguished experimentally with existing technology (Fig. 2a). As Fresnel reflection reduces the IR skin depth, we find the inclusion of the Fresnel-reflected incident IR pulse (i) prerequisite for reproducing the measured Cu(111) RABBITT in [5] and (ii) to modify photoelectron spectra from bulk and surface states differently, revealing their different degrees of spatial localization [2].

Fig. 2: (a) Suggested in situ comparative RABBITT setup [1] placing the two surfaces on a sliding platform while keeping all path lengths fixed. Spectra after subtraction of the single-XUV-photon yield for (b) Cu (100) and (c) Cu(111). (d) Sub-bands “B1” and “B2” of the Cu (111) valence band [1] are imaged in (c).

1Supported in part by NSF Grant No. PHY 1464417 and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under Award DE-FG02-86ER13491.