Single and paired parametric oscillators

Reed Nessler

TAMU IQSE, College Station TX and Baylor University, Waco TX

Parametric resonance phenomena are important in several areas of physics, ranging from the design of parametric amplifier circuits to the recently introduced Quantum Amplification by Superradiant Emission of Radiation (QASER).[1][2] The standard mathematical description underlying these effects is the Hill differential equation of a linear oscillator with a periodic frequency modulation. However, in the QASER we deal with two oscillators and an asymmetric periodically modulated coupling giving rise to a frequency-difference resonance.

Floquet theory yields elegant stability results for these models, and the two-oscillator case contains mathematical features not seen with the single oscillator, corresponding directly to the frequency-difference resonance phenomenon that is essential to the QASER.

We additionally consider the tractable case where the periodically varying coefficient is a δ-function instead of a sinusoid and obtain analytical formulas for the gain. The mathematics is related to the Kronig–Penney model of condensed-matter physics.

Gain g (left) and discriminant Δ (right) of the characteristic Floquet exponent corresponding to the set of coupled driven oscillator equations representing a model of the QASER as a function (blue lines) of the oscillator frequency ω_0 for a coupling $\Omega = \omega_0/2$ and a fixed amplitude $q = 0.4$ of the drive. Whereas g follows directly from numerical integration we obtain Δ from a Floquet analysis of the corresponding system of four first-order differential equations. We note that in the neighborhood of $\omega_0 = 8$ and $\omega_0 = 16$ the discriminant Δ assumes negative values, but positive ones around $\omega_0 = 1$. Orange lines follow from a version of the model where the cosine drive (inset) is replaced by a periodic sequence of δ-function kicks.