Monday Morning

7:20-7:25 Welcoming Remarks

Plenary

W. Schleich(Uni-Ulm)

7:25-7:55 H. Walther(MPQ)

Fock State Preparation in the Micromaser

7:55-8:25 A. Sokolov/S. Harris(Stanford)

Raman Generation by Phased and Antiphased Molecular States

<table>
<thead>
<tr>
<th>Session</th>
<th>Speaker(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of Quantum Mechanics</td>
<td>M. S. Zubairy(TAMU)</td>
<td>8:30 J. Clauser(Berkeley) Hidden Variable History</td>
</tr>
<tr>
<td>High Power Lasers and Laser Physics I</td>
<td>G. McCall(LANL)</td>
<td>8:50 E. Fry(TAMU) Locality in Quantum Mechanics</td>
</tr>
<tr>
<td>Femtosecond Physics and Applications I</td>
<td>A. Gaeta(Cornell)</td>
<td>9:10 Y. Shih(Maryland) New Quantum Eraser Experiments</td>
</tr>
<tr>
<td>9:30</td>
<td>M. Scully(TAMU) Coherent control meets thermodynamic dogma</td>
<td>9:50-10:10 Coffee Break</td>
</tr>
<tr>
<td>Plenary</td>
<td>M. Feld(MIT)</td>
<td>10:10-10:40 J. Kimble(Caltech) Single Atoms Bound in Orbit by Single Photons</td>
</tr>
<tr>
<td>Nonlinear Optics and Quantum Entanglement</td>
<td>M. Lukin(Harvard)</td>
<td>11:15 C. Bednar(TAMU) Quantum Coherence and Quantum Dense Coding</td>
</tr>
<tr>
<td>Rare Earths I</td>
<td>R. Cone(Montana SU)</td>
<td>11:55 L. Orozco(Stony Brook) Time-resolved Quantum Fluctuations of the Wave Amplitude of Squeezed Light</td>
</tr>
<tr>
<td>Femtosecond Physics II</td>
<td>R. Boyd(Rochester)</td>
<td>12:15 O. Pfüster(Virginia) The two-photon laser: a novel source of nonclassical light?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:35 J. Franson(Johns Hopkins) Nonlinear optics at single photon intensities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:55 L. Orozco(Stony Brook) Time-resolved Quantum Fluctuations of the Wave Amplitude of Squeezed Light</td>
</tr>
</tbody>
</table>

Femtosecond Physics and Applications I

A. Gaeta(Cornell) *Directed Energy Overview*

A. Hill(TAMU) *TBA*

W. Bohn(Stuttgart) *High Power IR Gas Lasers in Europe - Achievements and Perspectives*

A. Rebane(Montana SU) *Femtosecond holography and pulse interactions in inhomogenously broadened media*

Nonlinear Optics and Quantum Entanglement

M. Lukin(Harvard) *Quantum Coherence and Quantum Dense Coding*

J. Franson(Johns Hopkins) *Nonlinear optics at single photon intensities*

L. Orozco(Stony Brook) *Time-resolved Quantum Fluctuations of the Wave Amplitude of Squeezed Light*

O. Pfüster(Virginia) *The two-photon laser: a novel source of nonclassical light?*
Monday Evening

Plenary

H. Walther(MPQ)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00-7:30</td>
<td>S. Svanberg(Lund)</td>
<td>Spectroscopic Lasers for the Diagnostics and Treatment of Malignant Disease</td>
</tr>
<tr>
<td>7:30-8:00</td>
<td>M. Feld(MIT)</td>
<td>Diagnosis of Disease with Fluorescence!</td>
</tr>
</tbody>
</table>

Optical Microscopy

Bruce Barrett(U. Arizona)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:05</td>
<td>N. Kroo(Budapest)</td>
<td>Novel Optical Microscopy</td>
</tr>
<tr>
<td>8:25</td>
<td>J. Rivoal(Paris)</td>
<td>Scanning near-field optical microscopy</td>
</tr>
</tbody>
</table>

Rare Earths II

A. Craig(Montana SU)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X. Chen(Wheaton)</td>
<td>Thermal Effects on the Spectra of Rare Earth Ions in Solids</td>
</tr>
<tr>
<td></td>
<td>Z. Hassan(Temple)</td>
<td>High Density Fast Spectral Hole Burning in Thin Films of II-VI Materials Doped with Rare Earths</td>
</tr>
</tbody>
</table>

Coherence Effects I

H. Pilloff(ONR)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. Boyd(Rochester)</td>
<td>New Applications of EIT in Nonlinear and Quantum Optics.</td>
</tr>
<tr>
<td></td>
<td>S.-Y. Zhu(Hong Kong)</td>
<td>Time delay of light propagation via defect modes in one dimensional photonic crystals</td>
</tr>
</tbody>
</table>

Time		

8:45-9:05	Coffee Break	

Plenary

S. Harris(Stanford)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
</table>

Novel Lasers

B. Barrett(U. Arizona)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:40</td>
<td>M. Fedorov(Moscow)</td>
<td>FEL without inversion: gain optimization</td>
</tr>
<tr>
<td>10:00</td>
<td>P. Roos/J. Carlsten(Montana SU)</td>
<td>Development of nonresonant cw Raman Lasers</td>
</tr>
</tbody>
</table>

High Power Lasers and Laser Physics II

A. Hill(TAMU)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. Helms(Phillips)</td>
<td>TBA</td>
</tr>
<tr>
<td>9:40</td>
<td>M. Fedorov(Moscow)</td>
<td>FEL without inversion: gain optimization</td>
</tr>
<tr>
<td>10:00</td>
<td>H. Bruesselbach/D. Sumida(HRL Labs)</td>
<td>High power Yb:YAG lasers</td>
</tr>
</tbody>
</table>

Coherent Control I

M. Shapiro(Weizmann)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. Kompa(MPQ)</td>
<td>Femtochemistry - The Vision of Coherent Chemistry</td>
</tr>
<tr>
<td>9:05-9:35</td>
<td>R. Gordon(Illinois)</td>
<td>What Have we Learned From the Phase Lag in Coherent Control Experiments?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>P. Roos/J. Carlsten(Montana SU)</td>
<td>Development of nonresonant cw Raman Lasers</td>
</tr>
<tr>
<td>10:00</td>
<td>H. Bruesselbach/D. Sumida(HRL Labs)</td>
<td>High power Yb:YAG lasers</td>
</tr>
</tbody>
</table>
30th Winter Colloquium on the Physics of Quantum Electronics

Tuesday Morning

Plenary
N. Bigelow(Rochester)

7:25-7:55 M. Kasevich(Yale)
Atom Interferometer force sensors

7:55-8:25 V. Shalaev(NMSU)
Nonlinear optics and spectroscopy in fractal and percolation composites

Coherence Effects in Solids I
O. Kocharovskaya(TAMU)

8:30 T. Mossberg(Oregon)
Self-Driven Dynamics of Coherently Prepared, Cryogenic, Rare Earth Atoms in a Cavity.

8:50 S. Rand(Michigan)
Nonlinear Effects and Bistability

9:10 O. Kocharovskaya(TAMU)
Laser Control of nuclei in solid hosts

9:30 V. Shalaev(NMSU)
Microlaser made of Disordered Medium

Nano-Optics I
V. Shalaev(NMSU)

9:50-10:10 Coffee Break

Plenary
Y. Yamamoto(Stanford)

10:10-10:40 J. Sipe(Toronto)
"...with a little help from the lattice."
Coherent current control in the solid state

10:40-11:10 G. McCall(LANL)
TBA

Coherence Effects in Semiconductors
A. Smirl(UIowa)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 R. Binder(Arizona)
Atomic models for semiconductors?

11:55 D. Citrin(Washington SU)
Dynamics of Excitonic Wavepackets in Semiconductors at High Fields

Bose Einstein Condensation(BEC) and Atom Optics
M. Kasevich(Yale)

12:15 H. Wang(Oregon)
Coupling nanocrystals to a high-Q silica microsphere: cavity QED of semiconductor quantum dots

Nano-Optics II
S.-Y. Zhu(Hong Kong)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Bose Einstein Condensation(BEC) and Atom Optics
M. Kasevich(Yale)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Nano-Optics II
S.-Y. Zhu(Hong Kong)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Bose Einstein Condensation(BEC) and Atom Optics
M. Kasevich(Yale)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Nano-Optics II
S.-Y. Zhu(Hong Kong)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Bose Einstein Condensation(BEC) and Atom Optics
M. Kasevich(Yale)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Nano-Optics II
S.-Y. Zhu(Hong Kong)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Bose Einstein Condensation(BEC) and Atom Optics
M. Kasevich(Yale)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Nano-Optics II
S.-Y. Zhu(Hong Kong)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Bose Einstein Condensation(BEC) and Atom Optics
M. Kasevich(Yale)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam

Nano-Optics II
S.-Y. Zhu(Hong Kong)

11:15 A. Smirl(UIowa)
Quantum beating of dynamically interacting excitons in semiconductors: Vectorial dynamics and polarisation selection rules

11:35 G. Kurizki(Weizmann)
Laser Induced Gravity: 1/r forces in cold gases

11:55 H. Piloff(ONR)
The van der Waals effect on atom guiding of excited states.

12:15 Y. Zhu(Florida)
Manipulation of neutral atoms with dark hollow laser beam
Tuesday Evening

Plenary
R. Gordon(Illinois)

7:00-7:30 M. Shapiro(Weizmann)
Control of Chiral Molecule Production and Photoassociation of Ultracold Atoms by Coherent Population Transfer

7:30-8:00 R. Packard(Berkeley)
Progress toward a superfluid 3He quantum interference gyroscope

Coherence Effects II
V. Kocharovsky(TAMU)

8:05 G. Welch(TAMU)
Slow Group Velocities and Index Enhancement Via Quantum Coherence.

8:25 D. Yavuz/S. Harris(Stanford)
Eigenvectors of a Raman Medium

Gyroscopic Physics
R. Packard(Berkeley)

F. Karwacki(Navy)
Multiple quantum well visible light micro-structure modulator for a ring laser gyroscope.

S. Aseyev/P. Korkum(Ottawa)
Experimental demonstration of optical centrifuge for molecules

Optical Lattices
M. O'Hare(Dayton)

I. Deutsch(UNM)
Entangling atoms in an optical lattice

V. Milner(UTexas)
Chaos and Decoherence in Time-Dependent Optical Potentials

8:45-9:05 Coffee Break

Plenary
M. Fedorov(Moscow)

9:00-9:30 M. Lax(New York)
The Lax-Onsager Regression Theorem Revisited

Coherent Control II
V. Velichansky(TAMU)

9:40 M. Motzkus(MPQ)
Coherent Control in atoms and molecules with shaped femtosecond pulses and feedback optimization

10:00 T. Weinacht (Michigan)
Using quantum systems to solve algorithms and using algorithms to learn about quantum systems

Corelated Emission Laser (CEL) Gyro
M. O'Hare(Dayton)

M. S. Zubairy(TAMU)
CEL : concepts and recent advances

J. Bergou(CUNY)
Nonlinear theory of CEL gyro

Frontiers in Applied Optics
N. Kroo(Budapest)

S. Wilkinson(Raytheon)
General Studies in Infrared Countermeasure Systems

J. Dowling(JPL)
Quantum Interferometric Lithography
30th Winter Colloquium on the Physics of Quantum Electronics

Wednesday Morning

Plenary

- **7:25-7:55**
 M. Lax (New York)
 Quantum Cascade Lasers

- **7:55-8:25**
 F. Capasso (Lucent)
 The Growth of Quantum Cascade Lasers and communication Lasers with Solid Source Molecular Beam Epitaxy (MBE)

- **8:25-8:45**
 A. Cho (Lucent)
 The Growth of Quantum Cascade Lasers and communication Lasers with Solid Source Molecular Beam Epitaxy (MBE)

- **8:50-9:10**
 F. Tittel (Rice)
 Spectroscopic Applications of Quantum Cascade Lasers

- **9:10-9:30**
 M. Taubman (JILA)
 Stabilizing Quantum Cascade Lasers

- **9:30-9:50**
 E. Whittaker (Stevens)
 Frequency Modulation Spectroscopy Using the Quantum Cascade Laser

- **9:50-10:10**
 Coffee Break

- **10:10-10:40**
 S. Svanberg (Lund)
 Quantum Information

- **10:40-11:10**
 L. Cohen (CUNY)
 Wigner Distributions

- **11:15-11:35**
 J. Dowling (JPL)
 The universality of the quantum Fourier decomposition in forming the basis of quantum computation

- **11:35-11:55**
 C. Williams (JPL)
 Quantum Constraint Satisfaction

- **11:55-12:15**
 L. Wang (NEC)
 Can an ideal quantum logic gate maintain entanglement?

- **12:15-12:35**
 D. Abrams (JPL)
 Is quantum computing useful?

Quantum Cascade Lasers

- **F. Tittel (Rice)**
 Spectroscopic Applications of Quantum Cascade Lasers

BEC and Atom Optics II

- **M. Holthaus (Uni-Muenchen)**
 Density independent phase evolution of multicomponent condensates

- **M. Moore (Arizona)**
 Magnetic Guides and a Neutral-Atom Beamsplitter

- **D. Mueller / D. Anderson (Colorado)**
 Local-field effects in atom optics and the diffraction of dense atomic beams

Quantum Computation

- **J. Dowling (JPL)**
 The universality of the quantum Fourier decomposition in forming the basis of quantum computation

- **C. Williams (JPL)**
 Quantum Constraint Satisfaction

- **L. Wang (NEC)**
 Can an ideal quantum logic gate maintain entanglement?

- **D. Abrams (JPL)**
 Is quantum computing useful?

Wigner Distributions and Quantum-Classical Interface

- **L. Cohen (CUNY)**
 Reduced Interference Time-Frequency Distributions

- **L. Atlas (Washington)**
 TBA

Coherence Effects in Solids II

- **T. Mossberg (Oregon)**
 Interference Effects in Solids

 Implementation of 'hard optical pulses' and NMR-like pulse sequences in optical spectroscopy

- **Y. Rostovtsev (TAMU)**
 Interference Effects in Solids

Wigner Functions and Tunneling

- **W. Schleich (Uni-Ulm)**
 Wigner Functions and Tunneling

Index Enhancement & Nonlinear Effects in Mesoscopic Media

- **O. Keller (Denmark)**
 Index Enhancement & Nonlinear Effects in Mesoscopic Media
30th Winter Colloquium on the Physics of Quantum Electronics

Wednesday Evening

Plenary
Y. Shih (Maryland)

7:00-7:30 P. Richards (Berkeley)
Anisotropy of the cosmic microwave background radiation—Was the early universe a phase conserving linear amplifier?

Squeezed Light
J. Bergou (CUNY)

7:35 A. Matsko (TAMU)
Reduction of quantum fluctuations of electromagnetic field via coherent medium

7:55 M. Xiao (Arkansas)
Sub-shot-noise-limited optical heterodyne detection using an amplitude-squeezed local oscillator

8:15-8:35 Coffee Break

BEC and Atom Optics III
G. Kurizki (Weizmann)

8:35-9:05 Y. Yamamoto (Stanford)
Single Photon Turnstile

Coherence effects III
J. Bergou (CUNY)

8:35-9:05 V. Velichansky (TAMU)
High precision magnetometry in dense coherent media

9:10 K. Eikema/T. Hänisch (MPQ)
Continuous coherent Lyman-alpha radiation: a step closer to antihydrogen physics

9:30 R. Huang (Stanford)
Stimulated scattering of excitons into cavity polaritons

9:30 R. Jain (UNM)
Advanced Mid-IR Lasers Based on New, Highly-Efficient Cross-Relaxation Processes

9:30 S. Wilkinson (Raytheon)
T. Chuang (Fibertek) Multi-band Solid-State Laser for Infrared Countermeasures

9:30 A. Belyanin (TAMU)
Coherent far-infrared radiation from quantum-dot semiconductor heterostructures