Nonlinear optics of fast-ionizing media:
From the nanosecond to attosecond time scale

Aleksei Zheltikov

Institute for Quantum Science and Engineering, Department of Physics and Astronomy,
Texas A&M University, College Station, TX 77843

Physics Department, International Laser Center, M.V. Lomonosov Moscow State
University, Vorobyevy gory, 119992 Moscow, Russia

Ionization is one of the key processes accompanying the interaction of high-intensity laser radiation with matter. It generates charged particles, resulting in a dynamic modification of linear and nonlinear optical properties of the medium. Methods of nonlinear-optical spectroscopy, powered by modern laser technologies, offer unique tools for all-optical studies of complex physical processes involved in ultrafast ionization dynamics and the evolution of light fields in fast-ionizing media on a time scale from nanoseconds to attoseconds. A broad assortment of four-wave mixing techniques (Figs. 1a – 1c), including coherent anti-Stokes Raman scattering (CARS), has been used over the past decades to understand the dynamics of charged-particle generation and relaxation in gas and condensed media [1, 2]. In recent experiments, the nonlinear-optical methodology has been extended to enable time-resolved studies of an ultrafast build-up of the electron density in the ionized gas [3, 4], quantum-pathway-selective CARS spectroscopy of autoionizing states [5], and an all-optical mapping of attosecond electron tunneling dynamics [6, 7]. In nonlinear-optical bioimaging, an accumulation of free electrons generated by high-repetition-rate ultrashort laser pulses tends to initiate cascades of unwanted processes in biotissues, including the formation of reactive oxygen species, causing the death of cells, as well as DNA-strand breaking by low-energy electrons due to the rapid decay of transient molecular resonances localized on DNA constituents. These issues raise concerns regarding the noninvasiveness of nonlinear-optical neuroimaging techniques, calling for in-depth quantitative studies of ultrafast ionization phenomena accompanying nonlinear-optical interactions of laser pulses with brain tissues. An ionization-induced blue shift of the CARS signal can serve as an indicator of this ionization penalty in nonlinear-optical bioimaging [8]. This talk will give an overview of new techniques and approaches in the nonlinear-optical spectroscopy of fast-ionizing media.

References