Movies of nanoscale dynamics by extreme ultraviolet microscopy

C.S. Menoni1,2, S. Carbajo1,2, F. Brizuela1,2, A. Sakdinawat4,4, W. Chao1,3, E.H. Anderson1,3, A. V. Vinogradov5, I. A. Artioukov5, D.T. Attwood1,4, M. C. Marconi1,2, and J.J. Rocca1,2

1NSF ERC for Extreme Ultraviolet Science and Technology
2Electrical and Computer Engineering, Colorado State University, Fort Collins, USA
3Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, USA
4ECE Department, University of California, Berkeley, USA
5P. N. Lebedev Physical Institute, Moscow, Russia

†Corresponding author: sergio@engr.colostate.edu

Table-top full-field microscopes operating at extreme ultraviolet and soft x-ray (EUV/SXR) wavelengths can routinely image nanostructures and biological specimens with a spatial resolution better than 50 nm [1,2]. This high spatial resolution, combined with the recent demonstration of single laser shot imaging [3], opens the possibility for these laboratory-based microscopes to implement time-resolved imaging of repetitive nanoscale dynamics. Here, we demonstrate the capability to make movies of nanoscale dynamics from a sequence of time-synchronized EUV single shot images.

In a proof of principle experiment, the motion of an electrically driven cantilever tip, 60 nm in diameter, was characterized was captured with a single laser shot using a full field EUV microscope operating in transmission configuration. [1] The periodic motion of the cantilever tip driven by a 0.6 V\textsubscript{RMS}, 269.8 kHz signal was reconstructed from these images. The position of the tip with respect to the a reference surface is singularly determined along its periodic motion with ±24 nm accuracy. The recent demonstration of pulse energies above 10 μJ at λ = 13.9 nm from table-top lasers with duration shorter than 5 ps extends the possibility of time-resolved imaging of nanostructure dynamics to the GHz range with sub-30 nm spatial resolution [1,3].

Work supported by the National Science Foundation through Award EEC-0310717.