Optimal multiphoton phase sensing and measurement

G. J. Pryde1, G. Y. Xiang1,2, H. F. Hofmann3, B. L. Higgins1,4, D. W. Berry4, H. M. Wiseman1

1Centre for Quantum Dynamics, Griffith University, Nathan, Brisbane, 4111, Australia
2Key Laboratory for Quantum Information, University of Science and Technology of China, Hefei, 230026, China
3Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi Hiroshima 739-8530, Japan
4Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Multipartite entangled states can help to increase the precision of phase sensing. When the N photons are in a maximally entangled state, the phase uncertainty can be as low as $1/N$, which is \sqrt{N} times more precise than the standard quantum limit (SQL) [1]. To achieve this optimal phase sensitivity, it is necessary to distinguish even and odd photon numbers by performing a parity measurement at the output of the interferometer. However, parity measurements are extremely difficult to realize with current photon detection technologies, since they require high-fidelity resolution of $N+1$ different photon distributions between the output ports. In recent experiments, researchers have demonstrated precision beyond the SQL, for two and four photons, using only one or two photon-number detection patterns instead of parity measurements [2]. To realize efficient phase sensing at higher photon numbers, it is therefore important to consider the optimal phase sensitivities obtained when only a single interference fringe is detected.

Here we show that for single fringes, the maximally-entangled NOON state [1] does not achieve optimal phase sensitivity when $N > 4$. Instead, the optimal single fringe sensitivity is achieved by the Holland-Burnett (HB) state [3], which is generated by the interference of two input beams with equal photon numbers. We experimentally demonstrate the enhanced phase sensitivity of a single photon-counted fringe of the six-photon HB state and show that it has higher phase sensitivity than a single NOON fringe of equivalent visibility. Specifically, our single-fringe six-photon measurement achieves a phase variance three times below the standard quantum limit.

We will also discuss the use of adaptive measurements with sequences of 4, 2 and 1-photon path-entangled states to achieve ab-initio measurement of an unknown phase, demonstrating an experimental uncertainty below the SQL [4].

References: