Metamaterial Surface Antenna Technology:
A new generation of electrically scanned arrays

Nathan Kundtz1,2, Adam Bily1, Jeff Dallas1, David Nash1, Ryan Stevenson1, Philip Sullivan1,3 and Russell Hannigan1

1Intellectual Ventures, LLC., 1555 132nd Ave NE Bellevue, WA 98005, USA.
2Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA.
3Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, MT 59717, USA.

Intellectual Ventures’ (IV) Metamaterials Surface Antenna Technology (MSA-T) is a new class of antenna technology that can electronically steer an RF beam rapidly and precisely over wide angles; without the need for moving parts or expensive phase-shifting components. Instead, a reconfigurable holographic grating is used to control both the radiation pattern and polarization emitted from an otherwise passive aperture. A first application of MSA-T will be the development of user terminals for the new generation of Ka-band High Throughput Satellites (HTS); serving communications-on-the-move customers in aeronautical, maritime and land transport markets.

In this presentation I will discuss our efforts at Intellectual Ventures to transition the design methodologies developed in the metamaterials community into a commercial application. I will also describe some of the technical advances made to date as well as how these map to industry requirements.