Three and Four-Body Efimov States in an Ultracold Atomic Gas

Randall G. Hulet, Scott E. Pollack, and Daniel Dries

Department of Physics & Astronomy and Rice Quantum Institute
Rice University, Houston, TX 77005

We have observed the presence of weakly-bound three and four-body Efimov molecules in an ultracold gas of trapped lithium-7 [1]. Their presence is manifested in the rate of inelastic collisions that produce a detectable loss of atoms from the trap. Efimov molecules can only exist near a two-body scattering resonance, where the s-wave scattering length is much larger than the characteristic length scales of the two-body potential. This universal regime is characterized by extraordinarily small binding energies (~1 neV) and large molecular sizes (~100 nm). Efimov molecules can be accessed experimentally in ultracold atomic gases by using a magnetically-tuned Feshbach resonance, which enables the scattering length to be varied over many orders of magnitude [2]. We have identified two Efimov trimers and four associated four-body tetratomicons in lithium. Efimov molecules are predicted to occur in an infinite series, whose relation are given by a discrete scale invariance. The experimental relations between Efimov states will be compared with those given by universal theory.