Flat Optics: Controlling Wavefronts with Optical Antenna Metasurfaces

Nanfang Yu1, Patrice Genevet1,2, Francesco Aieta1,3, Mikhail A. Kats1, Romain Blanchard1, Jean-Philippe Tétienne1,4, Zeno Gaburro1,5, and Federico Capasso1

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
2Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843, USA
3Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
4Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS, 94235 Cachan, France
5Dipartimento di Fisica, Università degli Studi di Trento, via Sommarive 14, 38100 Trento, Italy

We have demonstrated a few flat optical components in the infrared spectral range using spatially inhomogeneous arrays of V-shaped optical antennas. The essence of these designs is using the array to create a phase gradient $d\Phi/dr$, which is equivalent to an effective wavevector along the interface, to bend the propagation of light.

By using phased antennas to create a circular interfacial phase distribution $\Phi = L\varphi$ (Fig. 1(a)), where L is an integer and φ is the azimuthal angle, we imparted orbital angular momentum of $L\hbar$ to an incident beam, creating a vortex beam in transmission [1],[2]. The power flow or Poynting vector of this peculiar beam follows a spiral trajectory, which has been visualized by interferometry (Fig. 1(b)). By imposing a hyperboloidal phase profile or other appropriate radial phase distributions on an interface, we have demonstrated flat lenses (Fig. 1(c)) with a number of desirable properties, including large numerical aperture, absence of spherical aberration and reduced comatic aberration [3]. By tailoring the spatial distribution of polarization response (Fig. 1(e)), we have demonstrated optically thin quarter-wave plate that generate high-quality circularly-polarized light over a broad wavelength range (Fig. 1(f)) [4].

Fig. 1. Flat optical components created by using phased optical antenna arrays. (a) SEM image of a metasurface that generates an optical vortex beam. (b) Spiral interferogram created by the interference between the vortex beam and a co-propagating Gaussian beam. (c) Left: SEM image of a flat lens with 3cm focal length; right: Phase distribution introduced by the flat lens. (d) Measured intensity profile at the focal plane of the lens. (e) Schematic of an optically-thin quarter-wave plate. (f) Measurements show that the quarter-wave plate creates circularly polarized beams with high purity over a broad wavelength range from ~5μm to ~10μm.