Collective nonlinear oscillators from
two-level atoms

Gavriil Shchedrin1,2, Yuri Rostovtsev3, and Marlan O. Scully1,2,4

1Texas A\&M University, College Station, TX 77843
2Princeton University, Princeton, NJ 08544
3University of North Texas, Denton TX 76203
4Baylor University, Waco, TX 76798

Nonlinear interactions and chaotic phenomena are the manifestations of the complex dynamics in laser-matter interactions. Development of the complex nonlinear models led to a realistic laser description and the subsequent understanding of the nontrivial laser-matter interactions [1]. In spite of these remarkable successes the roots of these complex models have never been properly established from the fundamental light-matter interaction. Here we demonstrate that simple two-level interacting system described by Maxwell-Schrödinger equations provides a full basis for the description of a wide range of complex nonlinear phenomena. In particular we show that interaction of a space-independent electromagnetic pulse with a gas of two-level atoms naturally leads to the Van der Pol oscillator equation [2]. By restoring the propagation of the electromagnetic pulse we arrive at the Duffing oscillator equation [3]. Our result provides an important link between physics of the chaotic phenomena on the one hand and two-level treatment of laser-matter interaction on the other hand. We suggest new experimental realizations of the nonlinear light-matter interactions that can lead to a significant progress in fundamental physics, quantum optics and engineering [4].

\begin{itemize}
\item [1] M. Sargent, M. O. Scully, and W. E. Lamb, Jr., Laser Physics, WV Press, 1974
\item [3] G. Duffing, Forced vibrations with a variable natural frequency, F. Vieweg, 1918.
\end{itemize}

FIG. 1: Phase portrait of the Van der Pol oscillator.